About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Coastal Engineering
Paper
A machine learning framework to forecast wave conditions
Abstract
A machine learning framework is developed to estimate ocean-wave conditions. By supervised training of machine learning models on many thousands of iterations of a physics-based wave model, accurate representations of significant wave heights and period can be used to predict ocean conditions. A model of Monterey Bay was used as the example test site; it was forced by measured wave conditions, ocean-current nowcasts, and reported winds. These input data along with model outputs of spatially variable wave heights and characteristic period were aggregated into supervised learning training and test data sets, which were supplied to machine learning models. These machine learning models replicated wave heights from the physics-based model with a root-mean-squared error of 9 cm and correctly identify over 90% of the characteristic periods for the test-data sets. Impressively, transforming model inputs to outputs through matrix operations requires only a fraction (<1/1,000th) of the computation time compared to forecasting with the physics-based model.