About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Nanotechnology
Paper
A high-bandwidth spintronic position sensor
Abstract
Position sensing with resolution down to the scale of a single atom is of key importance in nanoscale science and engineering. However, only optical-sensing methods are currently capable of non-contact sensing at such resolution over a high bandwidth. Here, we report a new noncontact, non-optical position-sensing concept based on detecting changes in a high-gradient magnetic field of a microscale magnetic dipole by means of spintronic sensors. Experimental measurements show a sensitivity of up to 40 ω/μm, a linear range greater than 10μm and a noise floor of 0.5 pm/ Hz. Also shown is the use of the sensor for position measurements for closedloop control of a high-speed atomic force microscope with a frame rate of more than 1 frame/s. © 2014 IOP Publishing Ltd.