About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Transactions on VLSI Systems
Paper
A forward body-biased low-leakage SRAM cache: Device, circuit and architecture considerations
Abstract
This paper presents a forward body-biasing (FBB) technique for active and standby leakage power reduction in cache memories. Unlike previous low-leakage SRAM approaches, we include device level optimization into the design. We utilize super high Vt (threshold voltage) devices to suppress the cache leakage power, while dynamically FBB only the selected SRAM cells for fast operation. In order to build a super high Vt device, the two-dimensional (2-D) halo doping profile was optimized considering various nanoscale leakage mechanisms. The transition latency and energy overhead associated with FBB was minimized by waking up the SRAM cells ahead of the access and exploiting the general cache access pattern. The combined device-circuit-architecture level techniques offer 64% total leakage reduction and 7.3% improvement in bit line delay compared to a previous state-of-the-art low-leakage SRAM technique. Static noise margin of the proposed SRAM cell is comparable to conventional SRAM cells. © 2005 IEEE.