About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
INTERSPEECH 2018
Conference paper
Word emphasis prediction for expressive text to speech
Abstract
Word emphasis prediction is an important part of expressive prosody generation in modern Text-To-Speech (TTS) systems. We present a method for predicting emphasized words for expressive TTS, based on a Deep Neural Network (DNN). We show that the presented method outperforms machine learning methods based on hand-crafted features in terms of objective metrics such as precision and recall. Using a listening test, we further demonstrate that the contribution of the predicted emphasized words to the expressiveness of the synthesized speech is subjectively perceivable.