About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
NAACL 2001
Conference paper
Why inverse document frequency?
Abstract
Inverse Document Frequency (IDF) is a popular measure of a word's importance. The IDF invariably appears in a host of heuristic measures used in information retrieval. However, so far the IDF has itself been a heuristic. In this paper, we show IDF to be optimal in a principled sense. We show that IDF is the optimal weight of a word with respect to minimization of a Kullback-Leibler distance suitably generalized to nonnegative functions which need not be probability distributions. This optimization problem is closely related to maximum entropy problem. We show that the IDF is the optimal weight associated with a word-feature in an information retrieval setting where we treat each document as the query that retrieves itself. That is, IDF is optimal for document self-retrieval.