About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
COLING/ACL 2006
Conference paper
Distortion models for statistical machine translation
Abstract
In this paper, we argue that n-gram language models are not sufficient to address word reordering required for Machine Translation. We propose a new distortion model that can be used with existing phrase-based SMT decoders to address those n-gram language model limitations. We present empirical results in Arabic to English Machine Translation that show statistically significant improvements when our proposed model is used. We also propose a novel metric to measure word order similarity (or difference) between any pair of languages based on word alignments. © 2006 Association for Computational Linguistics.