About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Biological Chemistry
Paper
Why do divalent metal ions either promote or inhibit enzymatic reactions? The case of BamHI restriction endonuclease from combined quantum-classical simulations
Abstract
Divalent metal ions are essential to many enzymatic reactions involving nucleic acids, but their critical and specific role still needs to be uncovered. Restriction endonucleases are a prominent group of such metal-requiring enzymes. Large scale accurate simulations of Mg- and Ca-BamHI elucidate the mechanism of the catalytic reaction leading to DNA cleavage and show that it involves the concerted action of two metal ions and water molecules. It is also established that what is decisive for the dramatically different behavior of magnesium (a cocatalyst) and calcium (an inhibitor) are kinetic factors and not the properties of the prereactive states of the enzymes. A new perspective is opened for the understanding of the functional role of metal ions in biological processes.