About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICASSP 2022
Conference paper
When Does Backdoor Attack Succeed in Image Reconstruction? A Study of Heuristics vs. Bi-Level Solution
Abstract
Recent studies have demonstrated the lack of robustness of image reconstruction networks to test-time evasion attacks, posing security risks and potential for misdiagnoses. In this paper, we evaluate how vulnerable such networks are to training-time poisoning attacks for the first time. In contrast to image classification, we find that trigger-embedded basic backdoor attacks on these models executed using heuristics lead to poor attack performance. Thus, it is non-trivial to generate backdoor attacks for image reconstruction. To tackle the problem, we propose a bi-level optimization (BLO)-based attack generation method and investigate its effectiveness on image reconstruction. We show that BLO-generated backdoor attacks can yield a significant improvement over the heuristics-based attack strategy.