About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Surface Science
Paper
Weak localization in indium oxide films
Abstract
We have observed anomalous transport properties in films of conducting indium oxide in both three and two dimensions. It is found that the interplay between d, l and lin(T) (the film's thickness, elastic and inelastic mean-free-paths, respectively) determines the system's dimensionality and the nature of the transport properties. In a previous study it was shown that experimental results on 2D samples of this material are adequately accounted for by modern localization theories. This conclusion is now being extended to the 3D range as well. At the same time we find strong evidence for the relevance of electron-electron interaction in both 2D and 3D samples below ~100K. In particular, the 3D → 2D crossover temperature as a function of d and the low-field negative magnetoresistance results agree quantitatively with a τin ~ h {combining short stroke overlay}/kBT law for the temperature variation of the inelastic relaxation time. © 1982.