About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review B - CMMP
Paper
Volume dependence of the magnetic phases of ordered FeCr
Abstract
The magnetic phase structure of FeCr in the CsCl (Formula presented) structure is studied as a function of volume by first-principles calculations using a four-atom unit cell. The ground state is found to be ferromagnetic (FM), but at a 3% expansion of the lattice constant the ground state becomes type-I antiferromagnetic (AF). The AF phase has the unusual structure in that both Fe and Cr sublattices are separately type-I AF. In both the FM and AF phases the Fe moment is reduced from that in pure bcc Fe and the Cr moment increased from that in pure bcc Cr. © 1998 The American Physical Society.