About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review Letters
Paper
Variational Neural-Network Ansatz for Continuum Quantum Field Theory
Abstract
Physicists dating back to Feynman have lamented the difficulties of applying the variational principle to quantum field theories. In nonrelativistic quantum field theories, the challenge is to parametrize and optimize over the infinitely many n-particle wave functions comprising the state's Fock-space representation. Here we approach this problem by introducing neural-network quantum field states, a deep learning ansatz that enables application of the variational principle to nonrelativistic quantum field theories in the continuum. Our ansatz uses the Deep Sets neural network architecture to simultaneously parametrize all of the n-particle wave functions comprising a quantum field state. We employ our ansatz to approximate ground states of various field theories, including an inhomogeneous system and a system with long-range interactions, thus demonstrating a powerful new tool for probing quantum field theories.