About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ACL 2019
Conference paper
Unsupervised neural text simplification
Abstract
The paper presents a first attempt towards unsupervised neural text simplification that relies only on unlabeled text corpora. The core framework is composed of a shared encoder and a pair of attentional-decoders, crucially assisted by discrimination-based losses and denoising. The framework is trained using unlabeled text collected from en-Wikipedia dump. Our analysis (both quantitative and qualitative involving human evaluators) on public test data shows that the proposed model can perform text-simplification at both lexical and syntactic levels, competitive to existing supervised methods. It also outperforms viable unsupervised baselines. Adding a few labeled pairs helps improve the performance further.