About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
AAAI 2017
Conference paper
Unsupervised deep learning for optical flow estimation
Abstract
Recent work has shown that optical flow estimation can be formulated as a supervised learning problem. Moreover, convolutional networks have been successfully applied to this task. However, supervised flow learning is obfuscated by the shortage of labeled training data. As a consequence, existing methods have to turn to large synthetic datasets for easily computer generated ground truth. In this work, we explore if a deep network for flow estimation can be trained without supervision. Using image warping by the estimated flow, we devise a simple yet effective unsupervised method for learning optical flow, by directly minimizing photometric consistency. We demonstrate that a flow network can be trained from end-to-end using our unsupervised scheme. In some cases, our results come tantalizingly close to the performance of methods trained with full supervision.