About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CIKM 2019
Conference paper
Synergizing local and global models for matrix approximation
Abstract
Ensemble matrix approximation (MA) methods have achieved promising performance in collaborative filtering, many of which perform matrix approximation on multiple submatrices of user-item ratings in parallel and then combine the predictions from the sub-models for higher efficiency. However, data partitioning could lead to suboptimal accuracy due to the lack of capturing structural information related to most or all users/items. This paper proposes a new ensemble learning framework, in which the local models and global models are synergetically updated from each other. This makes it possible to capture both local associations in user-item subgroups and global structures over all users and items. Experiments on three real-world datasets demonstrate that the proposed method outperforms six state-of-the-art methods in recommendation accuracy with decent scalability.