About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review Applied
Paper
Universal Gate for Fixed-Frequency Qubits via a Tunable Bus
Abstract
A challenge for constructing large circuits of superconducting qubits is to balance addressability, coherence, and coupling strength. High coherence can be attained by building circuits from fixed-frequency qubits; however, leading techniques cannot couple qubits that are far detuned. Here, we introduce a method based on a tunable bus which allows for the coupling of two fixed-frequency qubits even at large detunings. By parametrically oscillating the bus at the qubit-qubit detuning we enable a resonant exchange (XX+YY) interaction. We use this interaction to implement a 183-ns two-qubit iswap gate between qubits separated in frequency by 854 MHz, with a measured average fidelity of 0.9823(4) from interleaved randomized benchmarking. This gate may be an enabling technology for surface-code circuits and for analog quantum simulation.