About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Photonics Technology Letters
Paper
Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks
Abstract
An investigation of signal integrity in silicon photonic nanowire waveguides is performed for wavelength-division- multiplexed optical signals. First, we demonstrate the feasibility of ultrahigh-bandwidth integrated photonic networks by transmitting a 1.28-Tb/s data stream (32 wavelengths × 40-Gb/s) through a 5-cm-long silicon wire. Next, the crosstalk induced in the highly confined waveguide is evaluated, while varying the number of wavelength channels, with bit-error-rate measurements at 10 Gb/s per channel. The power penalty of a 24-channel signal is 3.3 dB, while the power penalty of a single-channel signal is 0.6 dB. Finally, single-channel power penalty measurements are taken over a wide range of input powers and indicate negligible change for launch powers of up to 7 dBm. © 2008 IEEE.