About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
BMVC 2017
Conference paper
Transformed anti-sparse learning for unsupervised hashing
Abstract
Anti-sparse representation was recently considered for unsupervised hashing, due to its remarkable robustness to the binary quantization error. We relax the existing spread property [4, 22] for anti-sparse solutions, to a new Relaxed Spread Property (RSP) that demands milder conditions. We then propose a novel Transformed Anti-Sparse Hashing (TASH) model to overcome several major bottlenecks, that have significantly limited the effectiveness of anti-sparse hashing models. TASH jointly learns a dimension-reduction transform, a dictionary and the anti-sparse representations in a unified formulation. We have conducted extensive experiments on real datasets and practical settings, and demonstrate the highly promising performance of TASH.