About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ISBI 2019
Conference paper
Training data independent image registration with gans using transfer learning and segmentation information
Abstract
Registration is an important task in automated medical image analysis. Although deep learning (DL) based image registration methods out perform time consuming conventional approaches, they are heavily dependent on training data and do not generalize well for new images types. We present a DL based approach that can register an image pair which is different from the training images. This is achieved by training generative adversarial networks (GANs) in combination with segmentation information and transfer learning. Experiments on chest Xray and brain MR images show that our method gives better registration performance over conventional methods.