About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SPS Annual Meeting 2022
Conference paper
Towards tunable room-temperature condensation in a polariton Su-Schrieffer-Heeger (SSH) chain
Abstract
Strong coupling of a cavity photon to an exciton in semiconductors leads to the formation of exciton-polaritons, light-matter quasiparticles that can undergo Bose-Einstein condensation (BEC). Patterning a length-tunable cavity by Focused Ion Beam milling allows engineering potential landscapes to trap these condensates and emulate different Hamiltonians. Here, we investigate a 1D polariton lattice with alternating coupling strengths, a so-called Su-Schrieffer–Heeger chain. Atomic Force Microscopy has been used to examine the structures, continued by optical characterization, indicating the formation of topological edge states in the lattice. Furthermore, we discuss our progress on demonstrating selective condensation in different lattice modes.