About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Applied Physics Letters
Paper
Tomographic study of atomic-scale redistribution of platinum during the silicidation of Ni0.95 Pt0.05 /Si (100) thin films
Abstract
Atom-probe tomography was utilized to study the distribution of Pt after silicidation of a solid-solution Ni0.95 Pt0.05 thin film on Si(100). Direct evidence of Pt short-circuit diffusion via grain boundaries, Harrison's type-B regime, is found after silicidation to form (Ni0.99 Pt0.01) Si. This underscores the importance of interfacial phenomena for stabilizing this low-resistivity phase, providing insights into the modification of NiSi texture, grain size, and morphology caused by Pt. Platinum segregates at the (Ni0.99 Pt0.01) Si/Si (100) interface, which may be responsible for the increased resistance of (Ni0.99 Pt0.01) Si to agglomeration. The relative shift in work function between as-deposited and annealed states is greater for Ni(Pt)Si than for NiSi. © 2009 American Institute of Physics.