Publication
Journal of Applied Physics
Paper

Thermodynamic and kinetic studies of laser thermal processing of heavily boron-doped amorphous silicon using molecular dynamics

View publication

Abstract

Laser thermal processing (LTP) has been proposed as a means to avoid unwanted transient enhanced diffusion and deactivation of dopants, especially boron and arsenic, during the formation of ultrashallow junctions. Although experimental studies have been carried out to determine the efficacy of LTP for pure Si and lightly B-doped junctions, the effects of high concentrations of dopants (above 2% B) on the thermodynamic and kinetic properties of the regrown film are unknown. In this study, a classical interatomic potential model [Stillinger-Weber (SW)] is used with a nonequilibrium molecular dynamics computer simulation technique to study the laser thermal processing of heavily B-doped Si in the range 2-10 at.% B. We observe only a small effect of boron concentration on the congruent melting temperature of the B:Si alloy, and thus the narrowing of the "process window" for LTP is predicted to be small. No significant tendency for boron to segregate was observed at either the regrowth front or the buried c-Si interface during fast regrowth. The B-doped region regrew as defect-free crystal with full activation of the boron atoms at low boron concentrations (2%), in good agreement with experiments. As the concentration of boron increased, the number of intrinsic Si defects and boron interstitials in the regrown materials increased, with a minor amount of boron atoms in clusters (<2%). An instability limit for crystal regrowth was observed at around 8%-10% boron atoms during fast regrowth; systems with 10% B showed partial amorphization during regrowth. Comparison with tight-binding quantum mechanical calculations showed that the SW model gives similar diffusivities in the liquid and tendency to cluster, but the lifetimes of the SW clusters are considerably too long (>150 ps, compared to 5 ps in tight binding). The importance of adequate system size is discussed. © 2002 American Institute of Physics. © 2002 American Institute of Physics.

Date

Publication

Journal of Applied Physics

Authors

Share