About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Transactions on Magnetics
Paper
Thermal engineering of giant magnetoresistive (GMR) sensors: Alternative dielectric gap
Abstract
A systematic study of alternative dielectric gap materials to reduce the self-heating problem in giant magnetoresistive (GMR) sensors was presented. It was found that the peak temperature rise was not a linear function of gap thermal resistance due to competition between heat conduction across the dielectric gap and heat spreading along the sensor/lead. Future recording heads were expected to employ dielectric gap layers of thickness smaller than 100 A as the gap thermal resistance will be dominated by the thermal boundary resistance.