About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Applied Physics
Paper
Study of interface effects in thermoelectric microrefrigerators
Abstract
Interface phenomena play a vital role in thermoelectric (TE) microrefrigerators. The present study employs a phenomenological model to examine the behavior of TE refrigerators as a function of thermal and electrical contact resistance, boundary Seebeck coefficient, and heat sink conductance. We modify the conventional definition of the figure of merit to capture the interface effects. A finite temperature drop across the interface between a metal electrode and a thermoelement is found to strongly influence the boundary Seebeck effect. Interface engineering can potentially improve the overall performance of TE microrefrigerators. © 2000 American Institute of Physics.