About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Tribology Letters
Paper
The relationship between PFPE molecular rheology and tribology
Abstract
The tribology of several perfluoropolyether (PFPE) lubricants was studied using a pin on disk (POD) test. During the POD test, PFPE is incrementally removed from the track with each sliding cycle. The number cycles to failure, NF, is detected as a sudden increase in the friction coefficient. Molecular theory for polymer melt rheology was employed to develop a universal scaling rule. The PFPE removal rate coefficient is proportional to a parameter containing the bulk viscosity, degree of polymerization, and temperature and structure scaling coefficients. The parameter is a measure of the frictional resistance to segmental sliding along the surface in the contact zone. The temperature scaling coefficient corrects for the absence of free volume in the molecularly-thin lubricant film. The structure scaling coefficient accounts for differences in the energy barriers to internal rotation. This is the first description of a relationship for the tribological properties of PFPEs that takes into account their viscosity, molecular structure, degree of polymerization, and temperature. © J.C. Baltzer AG, Science Publishers.