About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
TQC 2022
Conference paper
The Parametrized Complexity of Quantum Verification
Abstract
We initiate the study of parameterized complexity of QMA problems in terms of the number of non-Clifford gates in the problem description. We show that for the problem of parameterized quantum circuit satisfiability, there exists a classical algorithm solving the problem with a runtime scaling exponentially in the number of non-Clifford gates but only polynomially with the system size. This result follows from our main result, that for any Clifford + t T-gate quantum circuit satisfiability problem, the search space of optimal witnesses can be reduced to a stabilizer subspace isomorphic to at most t qubits (independent of the system size). Furthermore, we derive new lower bounds on the T-count of circuit satisfiability instances and the T-count of the W-state assuming the classical exponential time hypothesis (ETH). Lastly, we explore the parameterized complexity of the quantum non-identity check problem.