About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Fluid Mechanics
Paper
The instability of the steady flow past spheres and disks
Abstract
We consider the instability of the steady, axisymmetric base flow past a sphere, and a circular disk (oriented broadside-on to the incoming flow). Finite-element methods are used to compute the steady axisymmetric base flows, and to examine their linear instability to three-dimensional modal perturbations. The numerical results show that for the sphere and the circular disk, the first instability of the base flow is through a regular bifurcation, and the critical Reynolds number (based on the body radius) is 105 for the sphere, and 58.25 for the circular disk. In both cases, the unstable mode is non-axisymmetric with azimuthal wavenumber m = 1. These computational results are consistent with previous experimental observations (Magarvey & Bishop 1961 a, b; Nakamura 1976; Willmarth, Hawk & Harvey 1964). © 1993, Cambridge University Press. All rights reserved.