About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IJCAI 2021
Conference paper
The Fewer the Merrier: Pruning Preferred Operators with Novelty
Abstract
Heuristic search is among the best performing approaches to classical satisficing planning, with its performance heavily relying on informative and fast heuristics, as well as search-boosting and pruning techniques. While both heuristics and pruning techniques have gained much attention recently, search-boosting techniques in general, and preferred operators in particular have received less attention in the last decade. Our work aims at bringing the light back to preferred operators research, with the introduction of preferred operators pruning technique, based on the concept of novelty. Continuing the research on novelty with respect to an underlying heuristic, we present the definition of preferred operators for such novelty heuristics. For that, we extend the previously defined concepts to operators, allowing us to reason about the novelty of the preferred operators. Our experimental evaluation shows the practical benefit of our suggested approach, compared to the currently used methods.