About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SIAM Journal on Computing
Paper
The fast Cauchy transform and faster robust linear regression
Abstract
We provide fast algorithms for overconstrained ℓp regression and related problems: for an n × d input matrix A and vector b ∈ℝ n, in O(nd log n) time we reduce the problem minx∈ℝd ∥Ax-b∥p to the same problem with input matrix à of dimension s× d and corresponding b of dimension s×1. Here, à and b are a coreset for the problem, consisting of sampled and rescaled rows of A and b; and s is independent of n and polynomial in d. Our results improve on the best previous algorithms when n ≫ d for all p ∈[1, ∞) except p=2; in particular, they improve the O(nd1.376+) running time of Sohler and Woodruff [Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, 2011, pp. 755-764] for p=1, which uses asymptotically fast matrix multiplication, and the O(nd5 log n) time of Dasgupta et al. [SIAM J. Comput., 38 (2009), pp. 2060- 2078] for general p, which uses ellipsoidal rounding. We also provide a suite of improved results for finding well-conditioned bases via ellipsoidal rounding, illustrating tradeoffs between running time and conditioning quality, including a one-pass conditioning algorithm for general ℓp problems. To complement this theory, we provide a detailed empirical evaluation of implementations of our algorithms for p=1, comparing them with several related algorithms. Among other things, our empirical results clearly show that, in the asymptotic regime, the theory is a very good guide to the practical performance of these algorithms. Our algorithms use our faster constructions of well-conditioned bases for ℓp spaces and, for p=1, a fast subspace embedding of independent interest that we call the Fast Cauchy transform: a distribution over matrices π: ℝn ? ℝO(d log d), found obliviously to A, that approximately preserves the ℓ1 norms, that is, with large probability, simultaneously for all x, ∥Ax∥1 ≈ ∥Ax∥1, with distortion O(d2+η), for an arbitrarily small constant η > 0; and, moreover, πA can be computed in O(nd log d) time. The techniques underlying our Fast Cauchy transform include Fast Johnson-Lindenstrauss transforms, low-coherence matrices, and rescaling by Cauchy random variables.