About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE T-DMR
Paper
The energy-driven paradigm of NMOSFET hot-carrier effects
Abstract
As negative-MOSFET (NMOSFET) size and voltage are scaled down, the electron-energy distribution becomes increasingly dependent only on the applied bias, because of quasi-ballistic transport over the high-field region. A new paradigm, or underlying concept, of NMOSFET hot-carrier behavior is proposed here, in which the fundamental "driving force" is available energy, rather than peak lateral electric field, as it is in the lucky electron model (LEM). The new prediction of the energy-driven paradigm is that the bias dependence of the impact-ionization (II) rate and hot-carrier lifetime is, to the first order, given by the energy dependences of the II scattering rate S II(E) and an effective interface state generation (ISG) cross section S IT(E), whereas, under the LEM, these bias dependences are determined by the number of electrons with energy above the II and ISG "threshold energies." This approach allows an experimental determination of S IT. © 2005 IEEE.