The energetics of Asian summer monsoon
Abstract
In this paper, we examine the large-scale balances of kinetic energy, vorticity, angular momentum, heat and moisture over the Asian summer monsoon region. The five year (1986-1990) uninitialized daily analyses for the summer season comprising June, July and August (JJA), produced at the European Centre for Medium Range Weather Forecasts (ECMWF) under the aegis of Tropical Ocean and Global Atmosphere (TOGA) have been considered to carry out the study. The following features characterize the Asian summer monsoon domain. It acts as the source of kinetic energy as well as vorticity, and sink of heat and moisture. Kinetic energy and vorticity are produced in the monsoon region and transported horizontally. On the contrary, heat and moisture are transported into the monsoon region. The zonal and meridional components of adiabatic generation of kinetic energy contribute to the production of kinetic energy over the Arabian Sea and Bay of Bengal, respectively. The horizontal advection of relative vorticity is balanced by sub-grid scale generation. The angular momentum generated due to pressure torque (east-west pressure gradient) is balanced by the flux convergence of omega momentum. Further, the angular momentum budget delineates that flux convergence of relative momentum is necessary to maintain the surface westerlies against the friction. The horizontal convergence of heat and moisture facilitates enhancement of diabatic heating, and also leads to the formation of diabatic heat sources, which are crucial to sustain the summer monsoon circulation.