Publication
Surface Science
Paper

The chemisorption of chlorosilanes and chlorine on Si(111)7 × 7

View publication

Abstract

The chemisorption of SiCl4, Si2Cl6, and chlorine on Si(111)7 × 7 has been characterized using soft X-ray photoemission with synchrotron radiation, thermal desorption spectroscopy, and Auger electron spectroscopy. SiCl4 dissociatively chemisorbs on room temperature Si(111)7 × 7 with an extremely low sticking coefficient, with only SiCl remaining on the surface. In contrast, Si2Cl6 chemisorbs with ∼ 500 times greater probability and then partly dissociates into SiClx (x = 1, 2, 3) fragments. A monolayer of Cl deposited directly also contains SiCl, SiCl2, and SiCl3 surface species, but they are created via reaction with substrate Si atoms and have lower Si2p core level binding energies. Upon heating the surface all the adsorbed Cl is removed via desorption of silicon chlorides, primarily SiCl2, indicating that SiCl4, Si2Cl6, and chlorine will etch Si(111)7 × 7 if an additional reactant is not avail to remove the surface Cl. Interestingly, the different reactivities of SiCl4 and Si2Cl6 upon adsorption can be explained by the dynamics of different adsorption mechanisms. © 1990.

Date

Publication

Surface Science