About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
The atomic dynamics of fracture
Abstract
Computer simulation of fracture dynamics of solid materials was carried out by means of molecular dynamic computations. The work involved a study of crystal imperfections, strain, elastic deformation, transonic and supersonic crack motion and a dynamic brittle-to-ductile transition. A method which used quantum mechanical approach coupled with molecular dynamics was presented to simulate the tight-binding dynamics at the crack tip.