About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Macromolecular Chemistry and Physics
Paper
Synthesis of well-defined poly(alkyl methacrylate)-graft-polylactone by sequential living polymerization
Abstract
A novel combination of living polymerization reactions has been proposed for the controlled synthesis of poly(alkyl methacrylate)-graft-polylactones. This strategy relies upon the sequential living polymerization of alkyl methacrylates and aliphatic lactones, with an intermediate chemical transformation for shifting from the first mechanism to the second one. In the first step, an alkyl methacrylate (methyl and butyl) is copolymerized with 2-trimethylsiloxyethyl methacrylate (TMSEMA). This living anionic polymerization is initiated with diphenylhexyllithium( DPHLi) in the presence of a μ-ligand, lithium chloride, in THF at -78°C. The trimethylsiloxy groups are then hydrolyzed with release of hydroxyl groups which are reacted with triethylaluminum in order to form a multifunctional macroinitiator of the Al alkoxide type. The second step consists of the ring opening polymerization (ROP) of aliphatic lactones (ε-caprolactone, δ-valerolactone and 1,4,8-trioxaspiro[4.6]-9-undecanone (TOSUO)) with the formation of novel graft copolymers. As a result of the livingness of both the anionic and the ROP polymerization steps, the molecular weight of both the main backbone and the grafts is predictable, the apparent polydispersity is narrow (M̄w/M̄n from 1.05 to 1.30) and the grafting density can be controlled being dependent on the distribution of the hydroxyl groups within the precursor backbone. © Wiley-VCH Verlag GmbH, 1999.