About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Synthesis and direct visualization of block copolymers composed of different macromolecular architectures
Abstract
A novel approach toward the synthesis of block copolymers composed of architecturally different components, in this case, a nanoparticle covalently attached to a single linear coil is presented. By a synergistic combination of controlled radical polymerization, convergent dendrimer synthesis, and benzocyclobutene (BCB) cross-linking chemistry, strategies for the preparation of a variety of nanoparticle-coil copolymers were developed. Atomic force microscopy (AFM) was used to confirm the formation of architecturally differentiated block copolymers and enabled visualization of individual nanoparticles and their linear chain components for unambiguous characterization of the nanoparticle-coil structures. This confirmed the synthesis of the targeted nanostructure and revealed the dramatic effect that changes in macromolecular architecture can have on the morphology and assembly of these hybrid nanoparticle systems. © 2005 American Chemical Society.