About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
FOCS 2010
Conference paper
Sublinear optimization for machine learning
Abstract
We give sublinear-time approximation algorithms for some optimization problems arising in machine learning, such as training linear classifiers and finding minimum enclosing balls. Our algorithms can be extended to some kernelized versions of these problems, such as SVDD, hard margin SVM, and L 2-SVM, for which sublinear-time algorithms were not known before. These new algorithms use a combination of a novel sampling techniques and a new multiplicative update algorithm. We give lower bounds which show the running times of many of our algorithms to be nearly best possible in the unit-cost RAM model. We also give implementations of our algorithms in the semi-streaming setting, obtaining the first low pass polylogarithmic space and sublinear time algorithms achieving arbitrary approximation factor. © 2010 IEEE.