Study of yielding mechanics in nanometer-sized Au contacts
Abstract
Yielding properties of Au point contacts of nanometer-scale dimensions have been studied using a scanning tunneling microscope supplemented by a force sensor for measuring tip-sample forces. The contacts are made by indenting the tip typically 10 nm into the substrate, whereby an adhesion neck is formed. Three consecutive deformation phases of the neck can be identified during retraction of the tip: (1) buildup of tensile stress, (2) incomplete fracture, and (3) quasicontinuous plastic flow. Finally the neck breaks when a maximum of three to four atoms are left in the contact. In the plastic flow regime, the conductance and thus the contact area shrink exponentially with elongation of the neck, suggesting that plastic deformation occurs locally within 5 to 6 atomic layers. The stress applied during plastic flow is initially of the order of 10 GPa and gradually increases to 20 GPa shortly before the neck breaks. Accounting for a surface force contribution, an intrinsic yield strength of the order of 5 to 8 GPa is obtained, which is more than one order of magnitude larger than the macroscopic yield strength of Au. © 1996 American Institute of Physics.