About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Synchrotron Radiation
Paper
Studies of the magnetic structure at the ferromagnet-antiferromagnet interface
Abstract
Antiferromagnetic layers are a scientifically challenging component in magnetoelectronic devices, such as magnetic sensors in hard-disk heads, or magnetic random-access memory (RAM) elements. In this paper, it is shown that photoelectron emission microscopy (PEEM) is capable of determining the magnetic structure at the interface of ferromagnets and antiferromagnets with high spatial resolution (down to 20 nm). Dichroism effects at the L edges of the magnetic 3d transition metals, using circularly or linearly polarized soft X-rays from a synchrotron source, give rise to a magnetic image contrast. Images, acquired with the PEEM2 experiment at the Advanced Light Source, show magnetic contrast for antiferromagnetic LaFeO3, microscopically resolving the magnetic domain structure in an antiferromagnetically ordered thin film for the first time. Magnetic coupling between LaFeO3 and an adjacent Co layer results in a complete correlation of their magnetic domain structures. From field-dependent measurements, a unidirectional anisotropy resulting in a local exchange bias of up to 30 Oe in single domains could be deduced. The elemental specificity and the quantitative magnetic sensitivity render PEEM a perfect tool to study magnetic coupling effects in multilayered thin-film samples.