About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Scientific Reports
Paper
Structural and electronic properties of uranium-encapsulated Au 14 cage
Abstract
The structural properties of the uranium-encapsulated nano-cage U@Au 14 are predicted using density functional theory. The presence of the uranium atom makes the Au14 structure more stable than the empty Au14′cage, with a triplet ground electronic state for U@Au 14′. Analysis of the electronic structure shows that the two frontier single-occupied molecular orbital electrons of U@Au14 mainly originate from the 5f shell of the U atom after charge transfer. Meanwhile, the bonding orbitals and charge population indicate that the designed U@Au 14 nano-cage structure is stabilized by ionocovalent interactions. The current findings provide theoretical basis for future syntheses and further study of actinide doped gold nanoclusters, which might subsequently facilitate applications of such structure in radio-labeling, nanodrug carrier and other biomedical applications.