About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Organic Electronics
Paper
STM investigation of vapor-deposition polymerization
Abstract
We present a study of vapor-deposition polymerization (VDP) to produce thin layers of poly(phenylquinoxaline) (PPQ), a material that can be used as an electron-transport layer in multilayer organic electroluminescent devices. The polymer is prepared by the thermally-induced polycondensation reaction of 1,3-bis(phenylglyoxaloyl)benzene and 3,3′-diaminobenzidine. The two monomers are deposited by evaporation onto an atomically clean Au(111) surface under ultrahigh-vacuum conditions. Polymer formation is monitored in situ by scanning tunneling microscopy. Photoluminscence (PL) spectroscopy measurements, performed in situ, reveal that the PL spectrum of the VDP product corresponds to a reference spectrum for solution-synthesized PPQ. For monolayer coverage, polymer clusters are formed with the chains oriented parallel to each other. STM images suggest that the VDP-prepared films can be much smoother and more uniform than films deposited by spin coating. © 2001 Elsevier Science B.V. All rights reserved.