About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Spin superlattice behavior in ZnSe/Zn0.99Fe0.01Se quantum wells
Abstract
Spin superlattices with alternating nonmagnetic and magnetic layers, in which a tunable spin-dependent potential exists, have been fabricated. We show that the ZnSe/Zn0.99Fe0.01Se system, in which field-induced spin splittings in both valence and conduction bands can become much larger than the residual zero-field potentials, exhibits spin superlattice behavior. Low-temperature magnetoreflectance experiments have been used to investigate the nature of these structures, verifying through field-dependent spin splitting and transition strengths that they are in fact true spin superlattices. © 1991 The American Physical Society.