About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
INTERSPEECH - Eurospeech 1997
Conference paper
SPEAKER ADAPTATION BASED ON PRE-CLUSTERING TRAINING SPEAKERS
Abstract
A new strategy for speaker adaptation is described that is based on: (1) pre-clustering all the speakers in the training set acoustically into clusters; (2) for each speaker cluster, a system is built using the data from the speakers who belong to the cluster; (3) when a test speaker's data is available, we find a subset of these clusters, closest to the test speaker; (4) we transform each of the selected clusters to bring it closer to the test speaker's acoustic space; (5) we build a speaker-adapted model using transformed cluster models. This method solves the problem of excessive storage for the training speaker models^, as it is relatively inexpensive to store a model for each cluster. Also as each cluster contains a number of speakers, parameters of the models for each cluster can be robustly estimated. The algorithm has been evaluated on a large vocabulary system and comparied to existing algorithms. The imporvement over existing algorithms such as MLLFU2] is statistically significant.