About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review Letters
Paper
Spatially resolved tunneling along a molecular wire
Abstract
We have spatially resolved the electronic penetration of metallic electronic states through a molecular wire connected to an atomically clean contact. The molecular wire, which is 0.3 nm wide and 1.7 nm long, was electronically connected on one side, and a scanning tunneling microscope tip was used as a second movable electronic counterelectrode. The results reveal a clear exponential decay in the transparency (conductance) of the wire with distance from the contacted end. Analysis of the data shows that electrons are transported along the molecular wire by virtual resonance tunneling with an inverse decay length of 4 nm-1, in excellent agreement with theoretical calculations. © 1999 The American Physical Society.