About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Comput. Methods Appl. Mech. Eng.
Paper
Sparse matrix factorization in the implicit finite element method on petascale architecture
Abstract
The performance of the massively parallel direct multifrontal solver Watson Sparse Matrix Package (WSMP) for solving large sparse systems of linear equations arising in implicit finite element method on unstructured (free) meshes in solid mechanics was evaluated on one of the most powerful supercomputers currently available to the open science community-the sustained petascale high performance computing system of Blue Waters. We have performed full-scale benchmarking tests up to 65,536 cores using assembled global stiffness matrices and load vectors ranging from 11 to 40 million unknowns extracted from "real-world" commercial implicit finite element analysis (FEA) applications. The results show that a direct multifrontal factorization method with a hybrid parallel implementation in WSMP performs exceedingly well on a petascale high-performance computing (HPC) system, and delivers superior factorization time and parallel scalability, thus opening the door for the high fidelity modeling of complex industrial structures and assemblies in real scale.