About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CIKM 2012
Conference paper
Social recommendation across multiple relational domains
Abstract
Social networks enable users to create different types of personal items. In dealing with serious information overload, the major problems of social recommendation are sparsity and cold start. In existing approaches, relational and heterogeneous domains can not be effectively utilized for social recommendation, which brings a challenge to model users and multiple types of items together on social networks. In this paper, we consider how to represent social networks with multiple relational domains and alleviate the major problems in an individual domain by transferring knowledge from other domains. We propose a novel Hybrid Random Walk (HRW), which can integrate multiple heterogeneous domains including directed/undirected links, signed/unsigned links and within-domain/cross-domain links into a star-structured hybrid graph with user graph at the center. We perform random walk until convergence and use the steady state distribution for recommendation. We conduct experiments on a real social network dataset and show that our method can significantly outperform existing social recommendation approaches. © 2012 ACM.