About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Archive for Rational Mechanics and Analysis
Paper
Smallest scale estimates for the Navier-Stokes equations for incompressible fluids
Abstract
We consider solutions of the Navier-Stokes equations for incompressible fluids in two and three space dimensions. We obtain improved estimates, in the limit of vanishing viscosity, for the Fourier coefficients. The coefficients decay exponentially fast for wave numbers larger than the square root of the maximum of the velocity gradients divided by the square root of the viscosity. This defines the minimum scale, the size of the smallest feature in the flow. © 1990 Springer-Verlag.