About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
PRResearch
Paper
Simulating a ring-like Hubbard system with a quantum computer
Abstract
We develop a workflow to use current quantum computing hardware for solving quantum many-body problems, using the example of the fermionic Hubbard model. Concretely, we study a four-site Hubbard ring that exhibits a transition from a product state to an intrinsically interacting ground state as hopping amplitudes are changed. We locate this transition and solve for the ground-state energy with high quantitative accuracy using a variational quantum algorithm executed on an IBM quantum computer. Our results are enabled by a variational ansatz that takes full advantage of the maximal set of commuting Z2 symmetries of the problem and a Lanczos-inspired error mitigation algorithm. They are a benchmark on the way to exploiting near term quantum simulators for quantum many-body problems.