About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CHI 2010
Conference paper
SHRIMP - Solving collision and out of vocabulary problems in mobile predictive input with motion gesture
Abstract
Dictionary-based disambiguation (DBD) is a very popular solution for text entry on mobile phone keypads but suffers from two problems: 1. the resolution of encoding collision (two or more words sharing the same numeric key sequence) and 2. entering out-of-vocabulary (OOV) words. In this paper, we present SHRIMP, a system and method that addresses these two problems by integrating DBD with camera based motion sensing that enables the user to express preference through a tilting or movement gesture. SHRIMP (Small Handheld Rapid Input with Motion and Prediction) runs on camera phones equipped with a standard 12-key keypad. SHRIMP maintains the speed advantage of DBD driven predictive text input while enabling the user to overcome DBD collision and OOV problems seamlessly without even a mode switch. An initial empirical study demonstrates that SHRIMP can be learned very quickly, performed immediately faster than MultiTap and handled OOV words more efficiently than DBD. © 2010 ACM.