About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE TCST
Paper
Servo-pattern design and track-following control for nanometer head positioning on flexible tape media
Abstract
Achieving multi-Terabyte capacity in tape cartridges requires a substantially higher track density than that available in present systems, and hence a significantly higher positioning accuracy is required of the track-following servo in tape drives. In this paper, advanced concepts are considered for several elements of a tape system that enhance the track-following servo performance to reach nanometer positioning accuracy. We introduce a novel method for optimizing the geometry of servo patterns in a timing-based servo system. The design criterion aims to minimize the measurement error in the position-error signal (PES) yielded by a digital synchronous servo channel. A flangeless tape path is adopted to mitigate high-frequency components of the lateral tape motion. The track-following servo controller, which is designed based on the H ∞ approach, takes into account the measured plant transfer function, the disturbance characteristics of the tape path, and the properties of servo channel. These elements are combined to investigate the track-following performance achievable with a new high-SNR magnetic tape based on perpendicularly-oriented BaFe particles.With this setup, a record closed-loop track-following performance of less than 14 nm PES standard deviation is demonstrated. © 2011 IEEE.