About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Discrete Optimization
Paper
Separation of partition inequalities with terminals
Abstract
Given a graph with n nodes each of them having labels equal either to 1 or 2 (a node with label 2 is called a terminal), we consider the (1,2)-survivable network design problem and more precisely, the separation problem for the partition inequalities. We show that this separation problem reduces to a sequence of submodular flow problems. Based on an algorithm developed by Fujishige and Zhang the problem is reduced to a sequence of O(n4) minimum cut problems. © 2004 Elsevier B.V. All rights reserved.