About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
J. Comb. Theory Ser. A
Paper
Separation index of graphs and stacked 2-spheres
Abstract
In 1987, Kalai proved that stacked spheres of dimension d≥. 3 are characterised by the fact that they attain equality in Barnette's celebrated Lower Bound Theorem. This result does not extend to dimension d= 2. In this article, we give a characterisation of stacked 2-spheres using what we call the separation index. Namely, we show that the separation index of a triangulated 2-sphere is maximal if and only if it is stacked. In addition, we prove that, amongst all n-vertex triangulated 2-spheres, the separation index is minimised by some n-vertex flag sphere for n≥. 6.Furthermore, we apply this characterisation of stacked 2-spheres to settle the outstanding 3-dimensional case of the Lutz-Sulanke-Swartz conjecture that "tight-neighbourly triangulated manifolds are tight". For dimension d≥. 4, the conjecture has already been proved by Effenberger following a result of Novik and Swartz.